Triangulations and Related Problems

Computational Geometry – Recitation 10

7

Delaunay Triangulation

• Reminder – a triangulation which maximize the minimum angle in the triangulation.

Non-Delaunay triangulation

Delaunay triangulation

Delaunay Triangulation – Observations

A triangle is Delaunay

the circle through its vertices is empty of other sites

Other kinds of graphs - EMST

EMST (Euclidean Minimum Spanning Tree) –
A set of edges spanning a set of points with the minimum total edge length.

Other kinds of graphs - RNG

- *RNG* (Relative neighborhood graph) An edge (p,q) is a part of the RNG iff $d(p,q) \leq \min_{r \in P, r \neq p,q} \max(d(p,r), d(r,q))$
- <u>Claim</u>: The edge (p,q) is part of the RNG iff the lune of p and q is empty.
- It is easy to see from the definition.

Other kinds of graphs - GG

• GG (Gabriel Graph) –

Two points *p* and *q* are connected by an edge of the GG iff the disc with diameter *pq* does not contain any other point of *P*.

Other kinds of graphs

• Prove that

- The last relation is part of the HW.
- We will show the other two.

$EMST \subseteq RNG$

- Let $(p,q) \in EMST(P)$, and assume that $(p,q) \notin RNG(P)$
- That means that there exist point $r \in lune(p,q)$

- The edge (p,q) is the largest in the circle pqr, and thus, can not be part of EMST(P).
 - Recall Algo 1 MST rules

$RNG \subseteq GG$

- Reminder: $(p,q) \in RNG(P)$ iff lune(p,q) is empty.
- $(p,q) \in GG(P)$ iff the the disc with diameter pq does not contain any other point of P.

• The circle is subset of the lune, and thus the claim.

Euclidean Traveling Salesman Problem

- The *traveling salesman problem* (*TSP*) is to compute a shortest tour visiting all points in a given point set.
 - NP-hard.
- In the Euclidean version the distances are the Euclidean distance.
- Show how to find a tour T' whose length is at most two times the optimal length.

 $|T'| \le 2 \cdot |opt|$

Euclidean Traveling Salesman Problem

• Claim:

The optimal tour length is longer (or equal) to the EMST weight

• Proof:

Consider the graph created by the *TSP* tour, this graph spans the set of points and thus its weight is greater than the *EMST* weight.

Euclidean Traveling Salesman Problem

• Claim:

The length of a *DFS* traversal over the *EMST* is at most twice the length of the *EMST*

- (and thus, at most twice the length of the optimal tour).
- Proof:

Each edge is traversed at most twice.

- *TSP* Approximation algorithm: Find the *EMST* and return a *DFS* traversal tour.
- Complexity?

Computing the EMST

- What is the best algorithm to compute an *EMST*?
- Using Prim's/Kruskal's algorithm the complexity will be $O(n^2)$.
 - Why?
- Can we do better?
- Recall that $EMST \subseteq DT$
- Compute the *DT* of the set of points $O(n \log n)$
- Compute the *EMST* of the *DT* using Prim's/Kruskal's algorithm $O(n \log n)$
- Total complexity $O(n \log n)$